Evidence for cortical dysfunction and widespread manganese accumulation in the nonhuman primate brain following chronic manganese exposure: a 1H-MRS and MRI study.
نویسندگان
چکیده
Exposure to high levels of manganese (Mn) is known to produce a complex neurological syndrome with psychiatric disturbances, cognitive impairment, and parkinsonian features. However, the neurobiological basis of chronic low-level Mn exposure is not well defined. We now provide evidence that exposure to levels of Mn that results in blood Mn concentrations in the upper range of environmental and occupational exposures and in certain medical conditions produces widespread Mn accumulation in the nonhuman primate brain as visualized by T1-weighted magnetic resonance imaging. Analysis of regional brain Mn distribution using a "pallidal index equivalent" indicates that this approach is not sensitive to changing levels of brain Mn measured in postmortem tissue. Evaluation of longitudinal 1H-magnetic resonance spectroscopy data revealed a significant decrease (p = 0.028) in the N-acetylaspartate (NAA)/creatine (Cr) ratio in the parietal cortex and a near significant decrease (p = 0.055) in frontal white matter (WM) at the end of the Mn exposure period relative to baseline. Choline/Cr or myo-Inositol/Cr ratios did not change at any time during Mn exposure. This indicates that the changes in the NAA/Cr ratio in the parietal cortex are not due to changes in Cr but in NAA levels. In summary, these findings suggest that during chronic Mn exposure a significant amount of the metal accumulates not only in the basal ganglia but also in WM and in cortical structures where it is likely to produce toxic effects. This is supported by a significantly decreased, in the parietal cortex, NAA/Cr ratio suggestive of ongoing neuronal degeneration or dysfunction.
منابع مشابه
Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation.
High-dose manganese exposure is associated with parkinsonism. Because manganese is paramagnetic, its relative distribution within the brain can be examined using magnetic resonance imaging (MRI). Herein, we present the first comprehensive study to use MRI, pallidal index (PI), and T(1) relaxation rate (R1) in concert with chemical analysis to establish a direct association between MRI changes a...
متن کاملCerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI.
Manganese overexposure in non-human primates and humans causes a neurodegenerative disorder called manganism thought to be related to an accumulation of the metal in the basal ganglia. Here, we assess changes in the concentration of manganese in regions of the brain of a non-human primate (the common marmoset, Callithrix jacchus) following four systemic injections of 30 mg/kg MnCl2 H2O in the t...
متن کاملEffects of chronic manganese exposure on glutamatergic and GABAergic neurotransmitter markers in the nonhuman primate brain.
The neurological sequelae of chronic Mn exposure include psychiatric, cognitive, and motor deficits, suggesting the potential involvement of multiple neurotransmitter systems and brain regions. Available evidence in rodents suggests that Mn causes dysregulation of glutamatergic and gamma-aminobutyric acidergic (GABAergic) neurotransmitter systems. However, this has never been studied comprehens...
متن کاملHigh signal intensities on T1-weighted MRI as a biomarker of exposure to manganese.
Increased signal in T1-weighted images was observed in the experimental manganese (Mn) poisoning of the non-human primate and a patient with Mn neurointoxication. However, our study showed that the increased signals in magnetic resonance images (MRI) were highly prevalent (41.6%) in Mn-exposed workers. Especially 73.5% of the welders showed increased signal intensities. Blood Mn concentration c...
متن کاملPossible role for integrins in the development of tolerance to the analgesic effect of morphine in male rats
There is some evidence supporting the reduced activity of integrins following chronic administration of morphine. This reduction might play a role in morphine tolerance development. Manganese binds to the extracellular domain of integrins and makes them to be activated. The effect of integrins activation using manganese on tolerance development to the analgesic effect of morphine was investi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 94 2 شماره
صفحات -
تاریخ انتشار 2006